Biomedical Applications of Mems
نویسنده
چکیده
Micromachining and MEMS technologies can be used to produce complex electrical, mechanical, fluidic, thermal, optical, and magnetic structures, devices, and systems on a scale ranging from organs to subcellular organelles. This miniaturization ability has enabled MEMS to be applied in many areas of biology, medicine, and biomedical engineering – a field generally referred to as BioMEMS. The future looks bright for BioMEMS to realize (1) microsensor arrays that act as an electronic nose or tongue, (2) microfabricated neural systems capable of controlling motor or sensory prosthetic devices, (3) painless microsurgical tools, and (4) complete microfluidic systems for total chemical or genetic analyses.
منابع مشابه
A Review: MICROMIRROR
Micromirrors fabricated by MEMS technology have demonstrated to be important sensing or actuating components in many industrial and biomedical applications such as laser scanning displays, optical switch matrices, and biomedical imaging systems.Micromirrors fabricated by MEMS technology have demonstrated to be important sensing or actuating components in many industrial and biomedical applicati...
متن کاملProgress in Research of Flexible MEMS Microelectrodes for Neural Interface
With the rapid development of Micro-electro-mechanical Systems (MEMS) fabrication technologies, many microelectrodes with various structures and functions have been designed and fabricated for applications in biomedical research, diagnosis and treatment through electrical stimulation and electrophysiological signal recording. The flexible MEMS microelectrodes exhibit excellent characteristics i...
متن کاملProgress of MEMS Scanning Micromirrors for Optical Bio-Imaging
Microelectromechanical systems (MEMS) have an unmatched ability to incorporate numerous functionalities into ultra-compact devices, and due to their versatility and miniaturization, MEMS have become an important cornerstone in biomedical and endoscopic imaging research. To incorporate MEMS into such applications, it is critical to understand underlying architectures involving choices in actuati...
متن کاملNew Design of Mems piezoresistive pressure sensor
The electromechanical analysis of a piezoresistive pressure microsensor with a square-shaped diaphragm for low-pressure biomedical applications is presented. This analysis is developed through a novel model and a finite element method (FEM) model. A microsensor with a diaphragm 1000 „m length and with thickness=400 µm is studied. The electric response of this microsensor is obtained with applyi...
متن کاملIntroduction to Micro-Electro-Mechanical Systems (MEMS) with Emphasis on Optical Applications
Micro-Electro-Mechanical Systems, or MEMS, are integrated micro devices or systems combining electrical and mechanical components. They are fabricated using integrated circuit (IC) batch processing techniques and can range in size from micrometers to millimeters. These systems can sense, control and actuate on the micro scale, and function individually or in arrays to generate effects on the ma...
متن کامل